Beekeeper Central

View Original

What is Strange Honey Bee Behaviour?

Honey bees exhibit fascinating and often unnoticed behaviours. From intricate dances to transferring eggs between cells, these actions offer deeper insights into their world. Understanding these peculiar behaviours enhances our appreciation and beekeeping practices, revealing the marvels of these industrious insects.

The Unseen World of Honey Bees

The Complex Communication System of Bees

Honey bees are renowned for their sophisticated communication methods, which include the famous waggle dance. This intricate dance is performed by worker bees to inform their hive mates about the location of food sources. The dance conveys vital information such as the direction and distance to flowers rich in nectar and pollen. The angle of the dance in relation to the sun indicates the direction, while the duration of the waggle phase communicates the distance. Additionally, honey bees use pheromones, which are chemical signals that trigger specific responses within the hive. These pheromones can indicate the presence of a queen, signal alarm, or even mark trails to food sources. This complex system ensures the colony operates efficiently, with each bee understanding its role and the tasks required to sustain the hive.

The Mysterious Purpose of Bee Buzzing

The buzzing sound produced by honey bees is more than just a byproduct of their wing movement; it plays a crucial role in hive dynamics. Different buzzing sounds serve various purposes, from communication to defence. For instance, guard bees produce a distinctive buzz to warn intruders and protect the hive. Additionally, bees buzz to regulate the hive’s temperature by fanning their wings to cool it down or generate heat. Buzzing is also integral during the waggle dance, as it helps amplify the dancer’s message to other bees. This buzzing is not random; each variation in sound has a specific meaning and function. Understanding the nuances of bee buzzing provides deeper insights into their social structure and how they maintain hive harmony. These subtle but significant behaviours highlight the incredible complexity and organisation of honey bee colonies, underscoring their remarkable adaptability and communication skills.

Rare and Peculiar Behaviours

Bees Transferring Eggs Across Cells

One of the rare and intriguing behaviours observed in honey bees is the transfer of eggs across cells. This phenomenon, though uncommon, has been documented by beekeepers who have noted bees moving eggs from one cell to another. There are several hypotheses for this behaviour. One possibility is that bees transfer eggs to optimise the hive’s layout, ensuring that brood cells are placed in ideal locations for temperature regulation and protection. Another theory suggests that this behaviour could be a response to damaged or contaminated cells, prompting bees to relocate eggs to healthier, safer environments. This behaviour underscores the bees' adaptability and their commitment to maintaining a thriving hive. The impact on the hive can be significant, as it may enhance brood survival rates and overall colony health. Understanding this behaviour can provide deeper insights into the meticulous care honey bees exercise over their brood and the hive's internal dynamics.

See this content in the original post

Honey Bees Exhibiting Play-Like Behaviour

Another fascinating yet lesser-known behaviour of honey bees is their apparent engagement in play-like activities. Observations of bees chasing each other, performing aerial acrobatics, and engaging in what appears to be playful interactions suggest a level of cognitive complexity not commonly attributed to insects. These behaviours, often seen in young bees, may serve several purposes. Play-like activities could help young bees develop essential skills for foraging, navigation, and hive defence. Additionally, these interactions may strengthen social bonds within the colony, enhancing cooperation and communication. This playful behaviour indicates a high level of social complexity and cognitive ability, challenging traditional views of insect behaviour. It suggests that honey bees, much like higher animals, may experience a form of enjoyment or mental stimulation from these activities. Understanding these behaviours could lead to new insights into bee cognition and the social structure of their colonies, highlighting the intricate and multifaceted nature of honey bee societies.

Environmental Influences on Behaviour

Impact of Climate Change on Bee Behaviour

Climate change has far-reaching effects on many species, including honey bees. As climate patterns shift, bees face new challenges that significantly alter their behaviour. One notable impact is on their migration and foraging patterns. Unpredictable weather conditions and changing temperatures can disrupt the availability of flowering plants, forcing bees to travel further and forage for longer periods to find sufficient food. This increased effort can lead to higher energy expenditure and stress, affecting their overall health and productivity. Additionally, warmer winters can prevent bees from entering their natural hibernation state, causing them to consume more stored honey and potentially leading to starvation.

Changes in climate also impact hive maintenance. Bees are highly sensitive to temperature and humidity, which are crucial for brood development and hive stability. Extreme weather conditions, such as heatwaves or heavy rainfall, can make it difficult for bees to maintain the optimal hive environment. This can result in lower brood survival rates and weakened colonies. Understanding these impacts is vital for beekeepers, who may need to adopt new practices to support their hives in changing climatic conditions.

See this content in the original post

Response to Urbanisation and Pollution

Urbanisation and pollution present another set of challenges for honey bees. As natural habitats are replaced by urban landscapes, bees must adapt to new environments that are often less hospitable. Urban areas can offer diverse floral resources, but they also pose significant risks. Bees in cities face higher exposure to pollutants, which can affect their health and behaviour. For instance, air pollution can interfere with their ability to navigate, making it harder for them to find food and return to their hives.

Pesticides and chemicals commonly used in urban gardening and agriculture further exacerbate these issues. These substances can contaminate pollen and nectar, leading to poisoning and weakening of bee populations. Moreover, the heat island effect in cities can create microclimates that disrupt the bees’ natural behavioural patterns, such as foraging times and hive cooling strategies.

Pollution also impacts bees’ communication. Studies have shown that certain pollutants can mask the chemical signals bees use for communication, making it harder for them to relay important information about food sources and threats. This disruption can lead to decreased foraging efficiency and increased vulnerability to predators.

See this content in the original post


Understanding these environmental influences is crucial for developing strategies to mitigate their negative effects. Beekeepers and urban planners must work together to create bee-friendly environments, ensuring that these vital pollinators can continue to thrive despite the challenges posed by climate change and urbanisation.


Uncommon Adaptive Strategies

Adoption of Unusual Foraging Techniques

In response to increasing environmental stressors and heightened competition for resources, some honey bees have begun to adopt unconventional foraging techniques. Traditionally, honey bees forage for nectar and pollen from flowering plants. However, as these resources become scarcer due to habitat loss, climate change, and agricultural practices, bees are exploring alternative food sources. One such adaptation is the foraging of sap from tree trunks or even sugary residues from human activities. These unconventional methods ensure that the bees can still gather the necessary nutrients to sustain their colonies, even when traditional food sources are not readily available. Additionally, some bees have been observed foraging earlier in the morning or later in the evening to avoid competition with other pollinators. These adaptive behaviours highlight the bees' resilience and flexibility in the face of changing environmental conditions.

Hive Overheating and Cooling Strategies

Honey bees employ a variety of strategies to regulate hive temperature, which is crucial for brood development and overall colony health. During extreme heat, bees will fan their wings at the hive entrance to create airflow and reduce internal temperatures. This behaviour, known as "bearding," involves bees clustering outside the hive to dissipate heat and prevent overheating. Additionally, bees may collect water and distribute it throughout the hive, using evaporation to cool the interior. In contrast, during colder weather, bees generate heat by vibrating their flight muscles and clustering tightly together to maintain a stable hive temperature. These unique strategies ensure that the hive remains within an optimal temperature range, protecting the brood and maintaining hive health.

Strange Bee Interactions with Other Species

Symbiotic Relationships with Other Insects

Honey bees form fascinating symbiotic relationships with various insects, benefiting both parties involved. For instance, certain species of ants and honey bees have mutualistic relationships where ants protect the hive from predators in exchange for access to the hive's resources, such as honeydew. Another example is the relationship between bees and certain types of beetles. Beetles help clean the hive by feeding on debris and parasites, while bees provide a safe habitat for beetles. These interactions showcase the complexity of the hive ecosystem and the interdependence of different species.

Defensive Mechanisms Against Predators

Honey bees exhibit a range of unusual defensive behaviours to protect their hive from predators. One such behaviour is "balling," where bees surround a predator, such as a hornet, and generate heat through intense vibration, effectively cooking the intruder. Additionally, bees use propolis, a sticky resin, to entomb small predators that enter the hive. This not only immobilises the threat but also prevents the spread of pathogens. Bees also perform alarm dances and release alarm pheromones to alert the colony of an intruder, prompting a coordinated defensive response. These sophisticated defensive mechanisms highlight the bees' ability to protect their colony from various threats effectively.

These uncommon adaptive strategies and interactions underscore the remarkable resilience and ingenuity of honey bees, enabling them to thrive in diverse and challenging environments.

Human Influence on Bee Behaviour

Effects of Beekeeping Practices on Bee Behaviour

Modern beekeeping practices, while essential for maintaining healthy hives and optimizing honey production, can significantly influence honey bee behaviour. Regular hive inspections, for example, are necessary to monitor the health of the colony, check for diseases, and ensure the queen is laying eggs properly. However, these inspections can also disrupt the hive's natural rhythm and stress the bees, leading to temporary behavioural changes such as increased aggression or altered foraging patterns. Artificial feeding, commonly used during periods of low nectar flow, can also impact bee behaviour. While it provides necessary sustenance, it may reduce the bees' natural foraging instincts and alter their typical patterns of resource collection. Understanding these impacts is crucial for beekeepers to balance the benefits of intervention with the natural behaviours of their bees.

See this content in the original post


Impact of Pesticides and Chemicals

The exposure to pesticides and chemicals presents a severe threat to honey bee behaviour and colony health. Pesticides, particularly neonicotinoids, have been linked to disorientation and impaired navigation abilities in bees. Affected bees often struggle to return to their hives, leading to reduced foraging efficiency and weakened colony strength. Additionally, prolonged exposure to these chemicals can result in colony collapse disorder (CCD), where the majority of worker bees disappear, leaving behind the queen and a few nurse bees. The chemicals used in agricultural practices can contaminate the pollen and nectar that bees collect, introducing toxins into the hive and affecting the development and behaviour of larvae. Beekeepers and farmers must work together to minimize the use of harmful chemicals and adopt bee-friendly practices to ensure the sustainability of bee populations.


By understanding and mitigating the human influences on bee behaviour, beekeepers can help ensure healthier, more resilient bee colonies. This involves not only careful management practices but also advocating for reduced pesticide use and supporting research into the long-term effects of these substances on bee health.

See this content in the original post



The Future of Bee Behaviour Research

Advancements in Bee Behaviour Studies

Recent years have seen significant advancements in the study of honey bee behaviour, driven by technological innovations and a deeper understanding of bee biology. One major development is the use of advanced tracking systems that employ microchips and GPS technology to monitor the movement and activities of individual bees. These systems provide detailed insights into foraging patterns, hive dynamics, and communication methods that were previously difficult to observe. Additionally, genetic studies have made substantial progress in identifying genes associated with specific behaviours, such as aggression, foraging efficiency, and disease resistance. This genetic information helps researchers understand the underlying mechanisms driving bee behaviour and can inform selective breeding programs aimed at enhancing desirable traits in bee populations.

The integration of these technologies is revolutionising our ability to study bees in their natural environment with minimal disruption. High-resolution imaging and computer modelling are also being used to analyse hive structures and bee interactions, providing a comprehensive view of the complex social systems within a colony. These advancements are paving the way for more precise and effective beekeeping practices that support hive health and productivity.

Potential for New Discoveries

As research techniques continue to evolve, the potential for new discoveries in bee behaviour is immense. Improved analytical tools and methodologies are expected to uncover previously unknown aspects of bee social structure, communication, and adaptation strategies. For instance, studying the epigenetic changes in bees—how environmental factors influence gene expression—could reveal how bees adapt to rapidly changing environments. This knowledge is crucial for developing strategies to mitigate the impacts of climate change and other environmental stressors on bee populations.

Moreover, interdisciplinary approaches combining entomology, ecology, genetics, and data science are likely to yield novel insights into the resilience and adaptability of honey bees. Understanding these dynamics will not only enhance beekeeping practices but also contribute to broader ecological conservation efforts. The continued exploration of honey bee behaviour holds promise for securing the future of these vital pollinators in an increasingly challenging world.